ADVANCED CARDIOVASCULAR LIFE SUPPORT

Abolfazl Mollajan M.D.

Board Certified Intensivist

Asssistant Professor of Critical Care Medicine Iran University of Medical Sciences

MAIN SUBJECTS

- > ADULT CARDIAC ARREST ALGORITHM
- > ADULT POST CARDIAC ARREST CARE ALGORITHM
- > ADULT TACHYCARDIA ALGORITHM
- > ADULT BRADYCARDIA ALGORITHM

CARDIAC ARREST

- Cardiac arrsest is a sudden loss of blood flow resulting from the failure of the heart pump effectively.
- Signs include loss of consciousness and abnormal or absent breathing.
- Petient becomes UNSTABLE

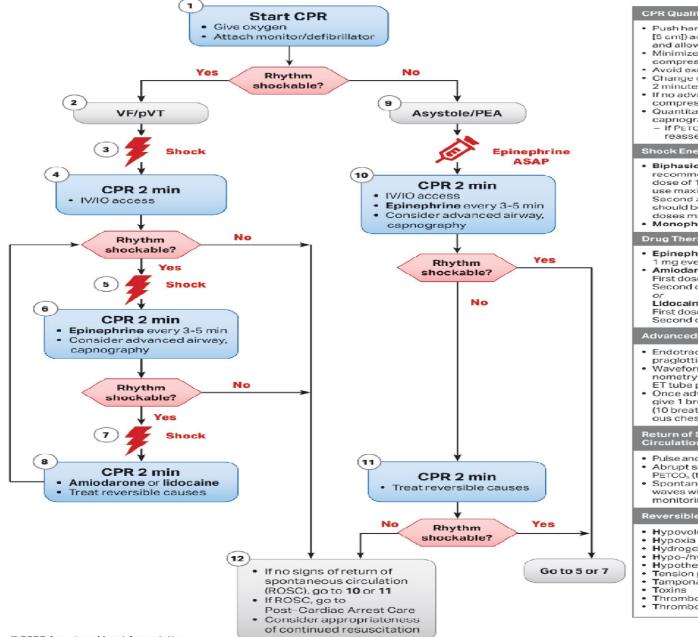
HOW TO IDENTIFY UNSTABLE PATIENT? (HASIA)

- H YPOTENSION
- A LTERED MENTAL STATUS
- S IGNS OF SHOCK
- I SCHEMIC CHEST DISCOMFORT
- A CUTE HEART FAILURE

If any of the above conditions are there, then it is an unstable patient and think for 5H and 5T and start CPR.

- Maintain airway in unconscious patient
- Consider advanced airway
- Monitor advanced airway if placed with quantitative waveform capnography

- Give 100% oxygen
- Assess effective ventilation with quantitative waveform capnography
- Do NOT over-ventilate



- Evaluate rhythm and pulse
- Defibrillation/cardioversion
- Obtain IV/IO access
- Give rhythm-specific medications
- Give IV/IO fluids if needed

- Identify and treat reversible causes
- Cardiac rhythm and patient history are the keys to differential diagnosis
- Assess when to shock versus medicate

Figure 4. Adult Cardiac Arrest Algorithm.

GUIDELINES

CPR Quality

- · Push hard (at least 2 inches [5 cm]) and fast (100-120/min) and allow complete chest recoil.
- · Minimize interruptions in compressions.
- · Avoid excessive ventilation.
- · Change compressor every 2 minutes, or sooner if fatigued.
- If no advanced airway, 30:2 compression-ventilation ratio.
- · Quantitative waveform capnography
 - If PETCO₂ is low or decreasing, reassess CPR quality.

Shock Energy for Defibrillation

- · Biphasic: Manufacturer recommendation (eg, initial dose of 120-200 J); if unknown, use maximum available. Second and subsequent doses should be equivalent, and higher doses may be considered.
- Monophasic: 360 J

Drug Therapy

- · Epinephrine IV/IO dose: 1 mg every 3-5 minutes
- Amiodarone IV/IO dose: First dose: 300 ma bolus. Second dose: 150 mg.

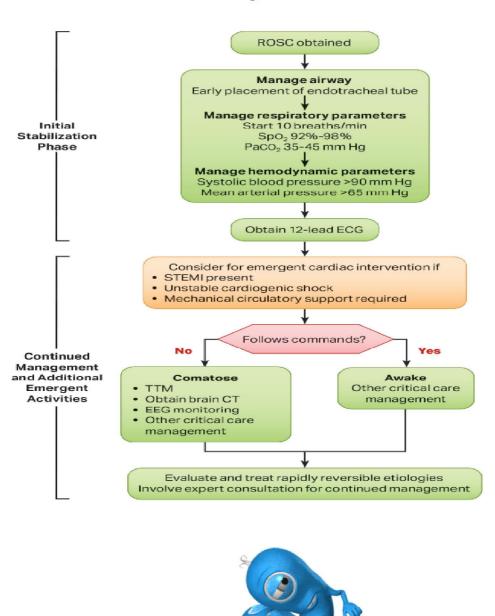
Lidocaine IV/IO dose: First dose: 1-1.5 mg/kg. Second dose: 0.5-0.75 mg/kg.

Advanced Airway

- · Endotracheal intubation or su-
- praglottic advanced airway Waveform capnography or cap-nometry to confirm and monitor ET tube placement
- Once advanced airway in place, give 1 breath every 6 seconds (10 breaths/min) with continuous chest compressions

Return of Spontaneous Circulation (ROSC)

- · Pulse and blood pressure
- · Abrupt sustained increase in PETCO₂ (typically ≥40 mm Hg)
- Spontaneous arterial pressure waves with intra-arterial monitoring


Reversible Causes

- Hypovolemia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothorax
- · Tamponade, cardiac
- Toxins
- · Thrombosis, pulmonary
- · Thrombosis, coronary

REVERSIBLE CAUSES OF CARDIAC ARREST

H's of ACLS			T's of ACLS		
Causes	Signs	Treatment	Causes	Signs	Treatment
Hypovolemia	-Rapid heart rate -Narrow QRS -Blood loss	-Obtain IO/IV Access -Administer fluid/blood -Use fluid challenge	Tamponade (Cardiac)	-Rapid heart rate -Narrow QRS -JVD -No pulse -Muffled heart sounds	-Pericardiocentesis -Thoracotomy
Hypoxia/ Hypoxemia	-Slow heart rate -Cyanosis	-Ensure airway is open -Ventilate -Ensure oxygen supply is adequate	Toxins	-Prolonged QT interval	-Based on overdose agent -Supportive care
Hydrogen Ion Excess (Acidosis)	-Low amplitude QRS complex	-Atriel blood gas -Provide adequate ventilations -Sodium bicarbonate (metabolic)	Tension Pneumothorax	-Slow heart rate -Narrow QRS -Unequal breathing -JVD -Tracheal deviation	-Needle decompression -Insertion of a chest tube
Hypokalemia/ Hyperkalemia	-Flattened T waves & a U wave (Hypokalemia) -Peaked T waves & a widened QRS (Hyperkalemia)	-Ventilate (respiratory) -Sodium bicarbonate (metabolic)	Thrombosis (Pulmonary)	-Rapid heart rate -Narrow QRS -Shortness of breath -Decreased oxygen -Chest pain	-Embolectomy -Fibrinolytic therapy -Anticoagulant therapy
Hypothermia	-Shivering -Previous exposure to cold temperatures	-Active warming measures -Temperature should be above 30°C	Thrombosis (Coronary)	-Abnormal ECG	-Angioplasty -Stent placement -Coronary bypass surgery

Figure 7. Adult Post-Cardiac Arrest Care Algorithm.

Resuscitation is ongoing during the post-ROSC phase, and many of these activities can occur concurrently. However, if prioritization is necessary, follow these steps:

- Airway management: Waveform capnography or capnometry to confirm and monitor endotracheal tube placement
- Manage respiratory parameters: Titrate FiO₂ for SpO₂ 92%-98%; start at 10 breaths/min; titrate to PaCO₂ of 35-45 mm Hg
- Manage hemodynamic parameters: Administer crystalloid and/or vasopressor or inotrope for goal systolic blood pressure >90 mm Hg or mean arterial pressure >65 mm Hg

Continued Management and Additional Emergent Activities

These evaluations should be done concurrently so that decisions on targeted temperature management (TTM) receive high priority as cardiac interventions.

- Emergent cardiac intervention: Early evaluation of 12-lead electrocardiogram (ECG); consider hemodynamics for decision on cardiac intervention
- TTM: If patient is not following commands, start TTM as soon as possible: begin at 32-36°C for 24 hours by using a cooling device with feedback loop
- Other critical care management
 - Continuously monitor core temperature (esophageal, rectal, bladder)
 - Maintain normoxia, normocapnia, euglycemia
 - Provide continuous or intermittent electroencephalogram (EEG) monitoring
 - Provide lung-protective ventilation

H's and T's

Hypovolemia

Hypoxia

Hydrogen ion (acidosis)

Hypokalemia/hyperkalemia

Hypothermia

Tension pneumothorax

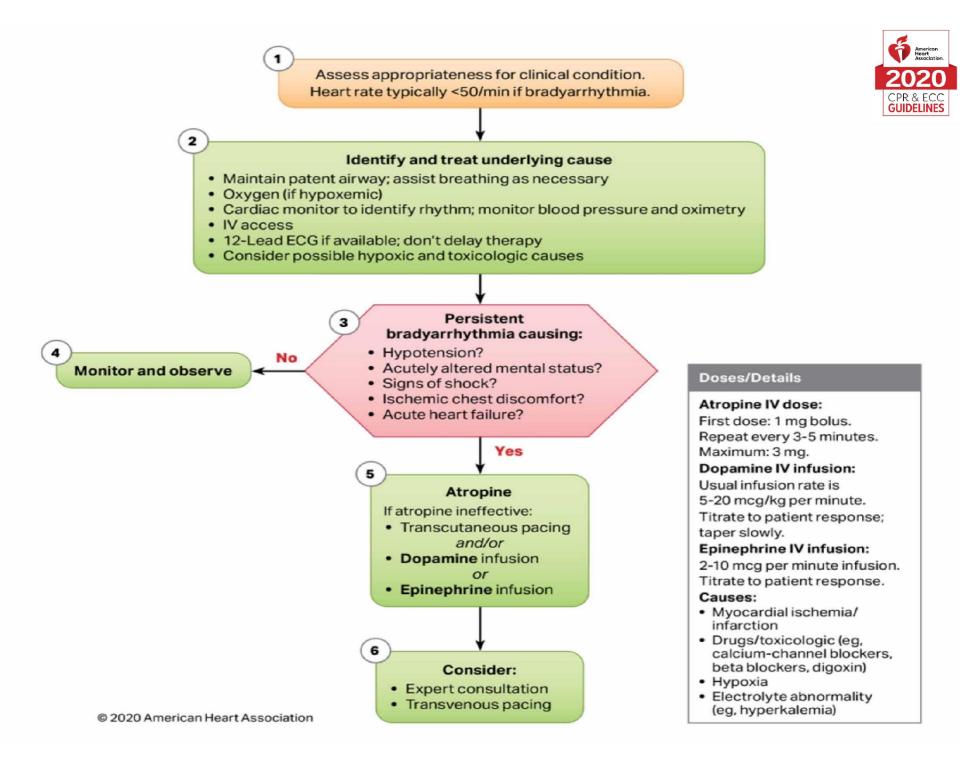
Tamponade, cardiac

Toxins

Thrombosis, pulmonary

Thrombosis, coronary

ADULT TACHYCARDIA WITH A PULS ALGORHYTHM



Adult Tachycardia With a Pulse Algorithm Doses/Details Assess appropriateness for clinical condition. Heart rate typically ≥150/min if tachyarrhythmia. **GUIDELINES** Synchronized cardioversion: Refer to your specific device's recommended energy level to maximize first shock success. Adenosine IV dose: First dose: 6 mg rapid IV push; follow with NS flush. Second dose: 12 mg if required. 2 Identify and treat underlying cause Antiarrhythmic Infusions for Stable Wide-QRS Tachycardia · Maintain patent airway; assist breathing as necessary Procainamide IV dose: Oxygen (if hypoxemic) 20-50 mg/min until arrhythmia suppressed, hypotension ensues, · Cardiac monitor to identify rhythm; monitor blood QRS duration increases >50%, or maximum dose 17 mg/kg given. pressure and oximetry Maintenance infusion: 1-4 mg/min. Avoid if prolonged QT or CHF. IV access Amiodarone IV dose: · 12-lead ECG, if available First dose: 150 mg over 10 minutes. Repeat as needed if VT recurs. Follow by maintenance infusion of 1 mg/min for first 6 hours. Sotalol IV dose: 100 mg (1.5 mg/kg) over 5 minutes. Avoid if prolonged QT. Persistent tachyarrhythmia causing: Synchronized cardioversion · Hypotension? Yes Consider sedation · Acutely altered mental status? If regular narrow complex, · Signs of shock? If refractory, consider consider adenosine · Ischemic chest discomfort? Underlying cause Acute heart failure? · Need to increase energy level for next cardioversion No · Addition of anti-Consider arrhythmic drug Yes Wide QRS? Expert consultation · Adenosine only if ≥0.12 second regular and monomorphic Antiarrhythmic infusion · Expert consultation No · Vagal maneuvers (if regular) · Adenosine (if regular) β-Blocker or calcium channel blocker · Consider expert consultation

@ 2020 American Heart Association

ADULT BRADYCARDIA WITH A PULS ALGORHYTHM

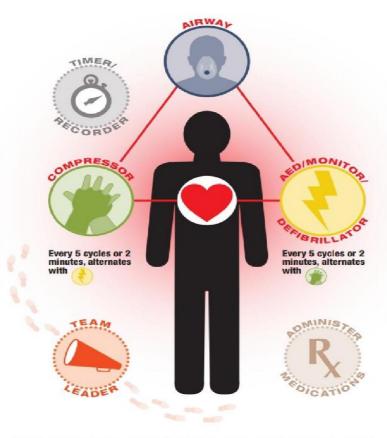
Positions for 6-Person High-Performance Teams*

Resuscitation Triangle Roles

Compressor

- · Assesses the patient
- Does 5 cycles of chest compressions
- Alternates with AED/Monitor/ Defibrillator every 5 cycles or 2 minutes (or earlier if signs of fatigue set in)

AED/Monitor Defibrillator


- Brings and operates the AED/monitor/defibrillator
- Alternates with Compressor every 5 cycles or 2 minutes (or earlier if signs of fatigue set in), ideally during rhythm analysis
- If a monitor is present, places it in a position where it can be seen by the Team Leader (and most of the team)

Airway

- Opens and maintains the airway
- · Provides ventilation

The team owns the code. No team member leaves the triangle except to protect his or her safety.

life is why™

Leadership Roles

Team Leader

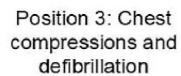
- Every resuscitation team must have a defined leader
- Assigns roles to team members
- · Makes treatment decisions
- Provides feedback to the rest of the team as needed
- Assumes responsibility for roles not assigned

Administer Medications

- · An ALS provider role
- Administers medications

Timer/Recorder

- Records the time of interventions and medications (and announces when these are next due)
- Records the frequency and duration of interruptions in compressions
- Communicates these to the Team Leader (and the rest of the team)


*This is a suggested team formation. Roles may be adapted to local protocol.

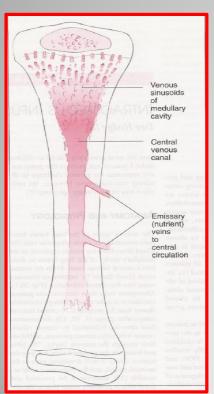
© 2016 American Heart Association

Position 1: Airway management

Position 4: "Hands off" team leader

Position 2: Chest compressions and IV access

Fig. 1 - "Circle of life" rescuer positions.


IV Access Preferred Over IO

2020 (New): It is reasonable for providers to first attempt establishing IV access for drug administration in cardiac arrest.

2020 (Updated): IO access may be considered if attempts at IV access are unsuccessful or not feasible.

INTRAOSSEOUS ROUTE

- Drugs and fluids can be delivered safely and effectively if IV access is not availabe
- Important points about IO:
 - Can be established in all age groups
 - Often can be achieved in 30 to 60 seconds
 - IO access is preferred over the ET route
 - Any drug or fluid administered IV can be given
 IO
 - No needs interruption of CPR

ENDOTRACHEAL ROUTE

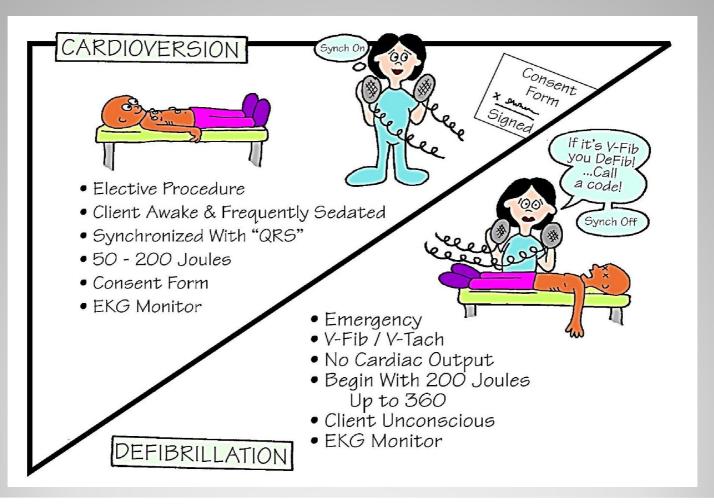
- IV and IO are preferred over the ET route
- ➤ The typical dose of the drugs via the Et route is 2 to 2/5 times the IV route
- AMIODARONE and SODIUM BICARBONATE are not allowed.
- Dilute the drugs in 5 to 10 ml of water or N/S, then inject into the trachea and several hyperventilation.

ET MEDICATIONS

NAVEL

- **N** ALOXONE
- **A** TROPINE
- **V** ASOPRESSIN
- **E** PINEPHRINE
- **L** IDOCAINE

Dose: 2-2.5 x normal


TYPES OF SHOCK

- Asynchronized (Defibrilation)
 - ✓ PulslessVT
 - ✓ VF
- Synchronized (Cardioversion)
 - ✓ PAT
 - ✓ Atrial Flutter
 - ✓ Atrial Fibrilation
 - ✓ V.Tach

CARDIOVERSION VS DEFIBRILATION

DRUGS USED FOR CPR

Drug	IV Dosage	Indications
Epinephrine	Low dosage (0.01 mg/kg); High dosage (0.1 mg/kg) after prolonged CPR; 10 times the dosage may be required when given IT	early in CPR (every other cycle) for asystole. ventricular fibrillation.
Vasopressin	0.4–0.9 U/kg	As an alternative to epinephrine every 3–5 minutes (every second BLS cycle) for asystole, bradycardia, PEA
Atropine	0.04 mg/kg; 0.1 mL/5 lb (0.5 mg/mL solution)	Sinus bradycardia, asystole, or PEA associated with high vagal tone
Lidocaine	2-4 mg/kg	Pulseless ventricular tachycardia, ventricular fibrillation resistant to defibrillation

DRUGS USED FOR CPR

Drug	IV Dosage	Indications	
Sodium bicarbonate	1 mEq/kg (1 mEq/mL solution)	Severe metabolic acidemia (pH < 7.0) associated with prolonged (>10–15 minutes) CPR efforts (must be adequately ventilated to be effective), hyperkalemia	
Calcium gluconate	1 mL/5–10 kg (2% solution without epinephrine)	Routine use not recommended; treat cases with documented hypocalcemia or severe hyperkalemia	
Amiodarone	5 mg/kg	Refractory ventricular fibrillation or pulseless ventricular tachycardia	
Magnesium sulfate	30 mg/kg	Hypomagnesemia, torsades des pointes	
Defibrillation	4–6 J/kg external monophasic; 2–4 J/kg external biphasic; 0.5–1 J/kg internal monophasic; 0.2–0.4 J/kg internal biphasic Nursing Lectures Inc.	Single shock for ventricular fibrillation or pulseless ventricular tachycardia; resume CPR efforts immediately after for one cycle (2 minutes) and reassess ECG, after which dosage escalation by 50% may occur (maximum dosage of 10 joules/kg) credibly Easy	

REVERSAL AGENTS

Drug	IV Dosage	Indications
Naloxone	0.02-0.04 mg/kg	To reverse opioids
Flumazenil	0.01-0.02 mg/kg	To reverse benzodiazepines
Atipamezole	0.05 mg/kg (or same volume as dexmedetomidine)	To reverse dexmedetomidine

